

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA

PROGRAMA DEL CURSO DE ELECTRONICA APLICADA 2

CODIGO:	239	CREDITOS:	5
	Mecánica		
ESCUELA:	eléctrica	AREA:	Electrónica
	Electrónica		
PRERREQUISITO:	aplicada 1	POSTREQUISITO:	
CATEGORIA:	Obligatorio	SECCION:	
	3 periodos		
HORAS POR SEMANA	de 50 min.	HORAS POR SEMANA DE	
DEL CURSO:	c/u	LABORATORIO:	
DIAS QUE SE IMPARTE	Lun, mier,		
EL CURSO:	vier.	DIAS DE LABORATORIO	
HORARIO DEL			
CURSO:		HORARIO DE LABORATORIO	:

DESCRIPCIÓN DEL CURSO:

El curso de electrónica aplicada II, es un curso orientado a el diseño de dispositivos electrónicos, amplia los conocimientos obtenidos en aplicada I exigiendo del alumno un proyecto, de mayor dificultad y pero con las mismas condiciones de ser un proyecto de realidad nacional. El curso orienta en su clase teorica a el diseno con alta conectividad, trata de usar conexiones USB, Ethernet, y otras.

OBJETIVOS GENERALES:

El objetivo del curso es orientar al estudiante en técnicas para la elaboración de dispositivos electrónicos, desde el análisis de ingeniería, el PCB final, y la presentación del mismo, pasando por todo el proceso de creación.

METODOLOGIA:

El curso se desglosará en dos grandes partes: Técnicas de diseño, que será impartido en clase magistral y diseño del proyecto, que será de un proyecto nuevo cada semestre, donde los alumnos presentaran sus diseños modulares que en conjunto crearan un gran proyecto, estos diseños serán evaluados en clase por el catedrático, y los alumnos en mesas de discusión.

EVALUACIÓN DEL RENDIMIENTO ACADEMICO:

la evaluación de la zona (75%) constara de 3 revisiones del proyecto final

- -25% el diseño de diagramas a bloques e ideas de diseño
- -25% diseño de circuitos electrónicos propuestos
- -25% PCB y circuitos electrónicos finales
- 25% examen final será la evaluación de teórica y practica del proyecto,

Nota de Promoción 100%

De acuerdo con el Normativ Facultad de Ingeniería, se p	o de Evaluación y Promoción del rocederá así:	estudiante de pregrado de la
PROCEDIMIENTO	INSTRUMENTO DE EVALUACIÓN	PONDERACIÓN
Total de la Zona Evaluación Final		75% 25%
Nota de Promoción		100%

CONTENIDO	PROGRAMATICO Y CALENDARIZACIÓN:
1	Forma de evaluación y programa
2	PRE elección de proyectos
3	Lectura de dispositivos de almacenamiento (MMC)
4	Lectura de dispositivos de almacenamiento (IDE)
5	Ejemplo de aplicación
6	USB introducción
7	USB señales eléctricas
8	Elección definitiva de proyectos
9	USB enumeración
10	USB migración desde isa
11	Construcción de dispositivos HDD
12	Ejemplo de aplicación
13	Primera presentación de proyectos
14	Primera presentación de proyectos
15	Manejo de potencia
16	Ejemplo de aplicación
17	Uso de Microsoft PROYECT
18	Teoría de red
19	Teoría de red
20	Discusión de problemas en proyectos
21	EVALUACION
22	Ejemplo de aplicación
23	DISCUSION DE COMO presentar los proyectos
24	Ajustes finales de proyectos
25	Ajustes finales de proyectos
26	Ajustes finales de proyectos
27	Ajustes finales de proyectos
28	Ajustes finales de proyectos
29	Entrega final de proyecto
30	Entrega final de proyecto

BIBLIOGRAFÍA:axelson, USB COMPLETE 3ed, john wiley and Sons, USB DESIGN BY EXAMPLE A PRACTICAL GUIDE TO BUILDING TO DEVICES